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'Department of Mechanical Engineering and Science. Kyoto University,
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

^Department of Mechanical Information Science and Technology,
Kyushu Institute of Technology, lizuka-City, Fukuoka 820-8502, Japan

®takashima@so[id.me.kyoto-u.ac.jp
''miyazakitgmech.kyoto-u.ac.jp
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Abstract. In this study, we focus on the modeling of solid structures that include microstruciures
observed in particle-dispersed composites. The finite element modeling can be used to clarify how the
macroscopic behaviors of solid structures are influenced by the microstruciures. In such a case, if the
whole structure including the microstruciures is modeled by the finite elements, an enormous number
of finite elements and enormous amount of computational time are required. To overcome such
difficulties, we propose a new method for modeling microstruciures. In this method, an explicit form
of the stress-strain relation covering both elastic and elastic-plastic regions is derived from the
equivalent inclusion method proposed by Eshclby that provides mathematical solutions for stress and
strain at an arbitrary point inside and outside the inclusion. The derived elastic-plastic constitutive
equation takes account of the microstruciures, so that the effect of microstruciures on the macroscopic
behaviors can be obtained from the conventional finite element method by using such a constitutive
equation without modeling microstructures in the finite element analysis. The effectiveness of the
proposed constitutive equation is verified for a simple problem by comparing the results of the
one-element finite element analyses using the proposed constitutive equation with those of the
detailed finite element analyses using multi-element finite element modeling.

I n t r o d u c t i o n

Composite materials have inhomogeneity in the viewpoint of microstructure, and the inhomogeneity
affects mechanical properties of composites. The finite element method can be used to clarify how
the macroscopic behaviors of solid structures are influenced by the microstructures. In such a case, if
the whole structure including the microstructure is modeled by the finite elements, an enormous
number of finite elements and enormous amount of computational time are required. To overcome
such difficulties, various studies have been performed on the macroscopic constitutive equation for
particle-dispersed composites in order to predict their mechanical behaviors. Among them, the
Eshelby's equivalent inclusion method [I] ha.s been used for predicting mechanical behaviors of
particle-dispersed composites. For example, Mori and Tanaka [2] developed the mean field theory
based on the Eshelby's equivalent inclusion method. They assumed that stress and strain are uniform
in each phase of a composite, and derived the elastic constitutive equation of the composite. On the
other hand, Tandon and Wcng [3] extended the Mori-Tanaka's theory to an elastic-plastic constitutive
equation for a particle-dispersed composite. In their theory, however, stress and strain distributions
are not taken into account in deriving the elastic-plastic constitutive equation. In actual
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particle-dispersed composites, there exist stress and strain distributions around particles, which may
affect the mechanical behaviors of composites. In the present study, we derive an elastic-plastic
constitutive equation that represents the macroscopic behaviors of a particle-dispersed composite by
taking account of stress and strain distributions in the matrix. In present theory, we modify the
Eshelby's equivalent inclusion method to calculate elastic-plastic stress and strain fields in the matrix.
The efTectiveness of the proposed constitutive equation is verified for a simple problem by comparing
the results of the one-clement finite element analyses using the proposed constitutive equation with
those of the detailed finite element analyses using multi-element finite element modeling.

Eshelby's theory
We assume that a single particle or inclusion exists in uniform infinite matrix. According to the
Eshelby's equivalent inclusion method, we can evaluate stresses and strains in the inclusion and
matrix under the uniform loading, assuming that the real inclusion is replaced by the virtual inclusion
or the equivalent inclusion with the same material of the matrix and a certain arbitrary eigenstrain.
The total strain of the equivalent inclusion is given as follows:

(1)

where e is the eigenstrain, and the subscripts 0,1 and 2 indicate the matrix at the infinite location, the
matrix and the inclusion, respectively. We assume that a composite is subjected to a uniform strain
at the infinite location. Here, we define the stress difference between and Sq as , and that between

and Eq as e ,̂ respectively.

£ i ( x ) = £ - o + < ( x ) , £ j = E O + E ' ^ ( 2 )

In Eq.(2), fijCx) and £f(x) indicate the functions of position. On the other hand, and e^ in the
inclusion are assumed to be constant. We can obtain 4(-*) 4 froni Ihe Eshelby tensors

and eigenstrain.

e ^ ( X ) = S , J X ) : E , E ' , = S , „ : E ( 3 )

Although the eigenstrain given by Eq.(3) is arbitrary, it has to satisfy the equivalence, as shown in Fig.
1. So we consider equivalent condition for the stress between the real inclusion and equivalent
inclusion, and we obtain the following equation.

o " , = c r . = D' :(£;-«•*), <t^=DI\E^ (4)

where D,' and Dl are the elastic matrix for the matrix material and that for the inclusion,

Equivalent
C o n d i t i o n

( T , = a

E-, =

I I
Fig. I. Concept of Equivalent inclusion method Fig. 2. A unit cell in the present model
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respectively. Using Eqs.(2)-(4), we obtain the eigenstrain as a function of that satisfies the
equivalent condition.

A„ =

(5)

(6)

where / denotes the unit matrix. By substituting Eq.(5) into Eq.(3) and using Eq.(2), we can obtain
the strains in the matrix and the inclusion, respectively, as follows;

£ l ( x ) = { I ® I + S ^ J x ) : ( 7 )
£ 2 = ( I < S i / + S , „ : A , ) : £ , . ( 8 )

As shown in Eqs.(7) and (8), both the strains in the matrix and the inclusion are calculated from the
Strain at the infinite location and the several material properties included in D' and Dj. Then the
stresses in the matrix and the inclusion are written as

a, = D^:(I0/+S,„:A,):s,
(9)

(10)

Macroscopic constitutive law
In this section, we derive a macroscopic constitutive equation from the equations shown in the
previous section. Fig. 2 shows a unit cell in the present model consisting of a lot of background cells
for numerical integration, which will be mentioned later. For the unit cell, we define the average strain
of the matrix ^ and that of the inclusion as follows:

£ = — S i d V,^ V. ■'».
1

s , d V, ( 11 )

where K,, and V are the volume of matrix, that of inclusion and the overall volume, respectively.
We assume that the average strain of the overall volume s is given as:

£ =(l-/)£:, +y£i. (12)

where / is the volume fraction. By substituting Eqs.(7), (8) and (11) into Eq.(l2), £ is written as a
function of £„ as follows:

£ - a \ £ Q ,

a = —
V

+ - . A J V

(13)

(14)

Similarly, the average stress in the matrix cr,, the average stress in the inclusion and the average
stress of the overall volume a are written as:

= — f <T̂ dV, (J =— f <T,rfF,
y \ 2 1 / h - , 2 (15)
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cr = p-.e .̂

D; : (/0 /+ D(;c): A^)dV Dl-.{I ® I^ S: A,)dV

(16)

(17)

The average stress a is written as a function of as well as the average strain e. a and P are 4th
order tensors that relate the average strain and the average stress with the strain at the infinite location.
Finally, we can obtain the relationship between the average stress and the average strain by
eliminating fg from Eq.(i3) and Eq.(16) as follows:

a = D' \e = p-.a' (18)

We can regard the above equation as a constitutive equation for a particle-dispersed composite. When
the matrix material is in a plastic state and the inclusion remains elastic, a constitutive equation for an
elastic-plastic problem can be obtained by changing the elastic matrix of the matrix material D{ in
Eqs.(6) and (17) to the elastic-plastic matrix of the matrix material D'/ and revising Eq.(18) to an
incremental form. Conclusively, a constitutive equation for an elastic-plastic problem of a
particle-dispersed composite is given as follows:

d<j = D"'' \ d£ = P:a ':ds,
a = —

V

P = -^ V I

^ ® ^ + So,Ax): A^dV + I®I + S,„:A,dV

D;'' :(I®I+D{x):Ao)dV+ : (I<S> f + S: A^)dV

(19)

(20)

(21)

w h e r e

A „ = (/0;-(d;'')"':D;J'-,9„ (22)

Numerical integration is required to calculate a and P both for an elastic problem and for an
elastic-plastic problem. Fig. 2 also shows the background cells for the numerical integration. Due to
the symmetry, the numerical integration is performed for a half region. When the matrix material is in
a plastic state and the inclusion remains elastic, the incremental strain and incremental stress in the
matrix material are given as follows, by replacing D{ in Eqs.(6) and (9) with :

de,{x) = (/ (8> /+
dcrAx) = Dl^'\l®l^-S,,{xy.A,y.ds,.

(23)

(24)

R e s u l t s a n d d i s c u s s i o n

We performed the analyses to verify the accuracy of the constitutive equation derived in the present
study. The problem analyzed here is a particle-dispersed composite under uniaxial loading. The
results of the analyses using the constitutive equation are compared with those of the analyses using
detailed finite element modeling. Fig. 3(a) shows the detailed finite element modeling consisting of a
lot of finite elements, and each element has the material properties of the matrix material or those of
the inclusion according as it belongs to the matrix region or the inclusion region. On the other hand, if
we employ the constitutive equation given in the present study, we can use the one-element finite
element modeling as shown in Fig. 3(b) without considering the detailed structure.
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Table 1 . Material parameters

£[GPa] a y[MPa] V £[MPa] n

M a t r i x 3 0 . 0 6 0 . 0 0 . 3 3 1 3 5 . 0 2 7 . 7 9

I n c l u s i o n 1 3 0 3 0 0 . 0 0 . 3 3 3 3 2 . 8 8 7 . 7 9

(a) Detailed finite element model (b) One-element finite element modeling
Fig. 3. Finite element modeling

( a ) Vo l u m e f r a c t i o n 1 0 % ( b ) Vo l u m e f r a c t i o n 5 0 %
Fig. 4. Comparison between present model and detailed finite element model

After obtaining the solution of the one-element finite element modeling, we can calculate the strain
and stress at an arbitrary point x in the matrix material using Eqs.(23) and (24). The material
properties used in the present study are given in Table 1, where £, <7^ and v denote Young's
modulus, yield stress and Poisson's ratio, respectively, and B and « are the coefficients of
Ramberg-Osgood relation given by

E = { < T l E ) + { < j l B y . ( 2 5 )
The results of the stress-strain relation at the loading location are shown in Fig. 4 for the volume
fractions of the inclusion/of 10% and 50%. The result of the one-element finite element modeling
using the proposed constitutive equation is compared with that of the detailed finite element
modeling. Both results agree well not only in the elastic region but also in the elastic-plastic region.
Figs. 5 and 6 compare the distribution of the equivalent strain e"^" obtained from the one-element
finite element modeling using the proposed constitutive equation with that of the detailed finite
clement modeling for the volume fraction of the inclusion/of 10%. In Fig. 5, the strain at the loading
location is 0.05%, and the whole structure remains elastic. On the other hand, in Fig. 6, the strain at
the loading location is 1.5%, and a part of the matrix region becomes plastic. For the elastic case
shown in Fig. 5, the result of present model is in good agreement with the result of detailed finite
element modeling, especially in the strain distribution near the inclusion surface
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(a) Detailed finite element modeling (b) Present model
Fig. 5. Distribution of equivalent strain for an elastic case

(a) Detailed finite element modeling (b) Present model
Fig. 6. Distribution of equivalent strain for an elastic-plastic case

and in the distribution of the lower strain area spreading along the 45-degree. For the elastic-plastic
case shown in Fig. 6, the comparison is not so good in comparison with the elastic case, but the
present model captures the features of the strain distributions characterized by the highest strain near
the inclusion surface and the lower strain area spreading along the 45-degree, although the lower
strain area is not so clear, compared with the detailed finite element modeling.

Concluding remarks
In the present study, we derived an elastic-plastic constitutive equation that expresses the
macroscopic behaviors of a particle-dispersed composite by taking account of stress and strain
distributions in the matrix. The effectiveness of the proposed constitutive equation is verified by
comparing the results of the one-element finite element analyses using the proposed constitutive law
with those of the detailed finite element analyses using multi-element finite element modeling. The
proposed constitutive equation enables the stress analysis of sold structures made of composite
materials without modeling microstructures of composite materials.
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