各種顕微鏡画像を用いたデジタル画像相関法による 微細電子材料のひずみ測定結果の比較

鹿児島大学機械工学科 近藤 耀平

1. 緒言

SEM-DICMによる微細領域のひずみ計測技術は、微細構造物の 解析精度の向上に大きく貢献する事ができるが、多くの外的要因 により高い精度で計測するには困難である.本研究では、チップ 内のはんだ接合部周辺の熱による変形過程を走査型電子顕微鏡 (SEM)、レーザー走査型顕微鏡(LSM)、光学顕微鏡で撮影した画像 を用いてデジタル画像相関法(DICM^{III}を行う.以上より、SEM を 用いた結果とレーザー走査型顕微鏡、光学顕微鏡を用いた結果を 比較し、SEM-DICMによる熱負荷時のひずみ計測の解析精度を比 較、評価する事を目的とする.

2. ひずみ計測理論

デジタル画像相関法(DICM)とは、計測対象物の表面がもつ何ら かのパターンをデジタル画像として取り込み、部分領域のパター ンを変形前後で探索することによって着目点の変位量を算出する 手法である。利用されるパターンは変形前後で表面の各点の特徴 を保持していなければならない、本研究では、加熱装置を用いて 試験用チップの熱変形によるひずみを計測する必要があるため、 デジタル画像相関法を用いて熱ひずみ計測に基づいたひずみ分布 を作成した。

3. 各観察装置による熱ひずみ分布計測 3.1 試験用チップ

計測には20mm角のApple A4 を Fig.1 に示す大きさに2 枚切断 し、Sample A、Sample B として使用した.また、計測に使用する はんだのサイズは約300×150µm であり、図に示す赤線内を測定範 囲とした.顕微鏡観察の前処理として、SEM 画像取得時にチャー ジアップを防止するため、Au スパッタリングを行い約10nmのAu を堆積させた.次に、95°Cの水蒸気に9時間暴露させ、試験チッ プ断面にまだら模様を付加した.

3.2 実験方法・条件

試験用チップを 10°C/min の速さで昇温し、初期温度から 200°C までを計測した. 観察倍率と画像サイズは、LSM:20×, 1024×768, 光学顕微鏡:600×, 2448×2048, SEM:140×, 2560×2048 でそれぞ れ計測した.

3.3 熱ひずみ分布の結果比較

各観察装置で撮影した画像を用いて、それぞれの初期温度から200°Cの加熱時におけるひずみ分布計測結果をFig.2~7 に示す.これは初期温度から200°Cの各保持温度区間でのひずみを足し合わせた結果である.

Sample A, B の全体的な比較をした場合,どの観察装置を使用 しても,程度の差こそあれひずみ結果を一致させる事ができた. Sample A の結果を比較すると、E_{xx}は、定性的に異なり、E_{yy}と E_{xy} では、定性的、定量的に一致している部分もある事が分かるが、 全体的にひずみ分布に差が生じているため、これらの結果からは 信頼性が期待できない、この原因として、Sample A の劣化が進ん でいた事と SEM 観察時に試料を入れるホルダーの熱電対が不安 定だった事が挙げられる. Sample B の結果比較からは、全体を通 して定性的、定量的に一致している部分が多い事が分かる. それ ゆえ、Sample B の結果は Sample A の結果に比べ信頼性が高いと考 えられる. さらに、SEM の結果が LSM と光学顕微鏡との結果に ほぼ一致している事から、SEM-DICM の精度を確認する事ができ た.

本研究で使用した模様付けの方法は、SEM 観察用のものであったが、LSM と光学顕微鏡を用いた場合でも、DICM 解析が行なえる事が分かった.

4. 結言

本研究では、各種顕微鏡画像を用いて DICM 計測を行い、微細 電子材料内のはんだ接合部周辺の熱ひずみ分布を取得し、比較し た.各種顕微鏡と DICM を組み合わせた熱ひずみ計測結果の比較 により、どの観察装置を用いても同程度のひずみ分布が得られる 事が確認できた、今後は、SEM-DICM によるひずみ計測を、より 微細な領域かつ高精度で行うために、高解像度で変形過程を撮影 できるカメラの開発や、より小さい模様付けの方法を研究してい く必要がある.

参考文献

 M.A. Sutton, W.J. Wolaters, W.H. peters, W.F. Ranson and S.R. McNeill, "Determination of Displacements using an Improved Digital Image Correlation Method", Computer Vision, pp. 133-139, 1983.

